skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Korten, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph G. A partition of V(G) is connected if every part induces a connected subgraph. In many applications, it is desirable to obtain parts of roughly the same size, possibly with some slack s. A Balanced Connected k-Partition with slack s, denoted (k, s)-BCP, is a partition of V(G) into k nonempty subsets, of sizes n1,…,nk with |ni−n/k|≤s , each of which induces a connected subgraph (when s=0 , the k parts are perfectly balanced, and we call it k-BCP for short). A recombination is an operation that takes a (k, s)-BCP of a graph G and produces another by merging two adjacent subgraphs and repartitioning them. Given two k-BCPs, A and B, of G and a slack s≥0 , we wish to determine whether there exists a sequence of recombinations that transform A into B via (k, s)-BCPs. We obtain four results related to this problem: (1) When s is unbounded, the transformation is always possible using at most 6(k−1) recombinations. (2) If G is Hamiltonian, the transformation is possible using O(kn) recombinations for any s≥n/k , and (3) we provide negative instances for s≤n/(3k) . (4) We show that the problem is PSPACE-complete when k∈O(nε) and s∈O(n1−ε) , for any constant 0<ε≤1 , even for restricted settings such as when G is an edge-maximal planar graph or when k≥3 and G is planar. 
    more » « less